
ENER314 RASPBERRY PI RF-TRANSMITTER BOARD

1 of 6

Introduction

The RF transmitter add-on board can be used with the R-PI to control up to 4 simple Energenie radio
controlled sockets independently using a small software program. We have written a simple program in
Python to allow us to switch the sockets on and off with a single keyboard press.

The add-on board connects to the row of pins called the GPIO which can be controlled as either input or
output lines under your software control.

Installing the board

Fig. 1: R-Pi with piggy back RF-transmitter board

Install the board on to the row of pins as show in the picture and connect your Raspberry-Pi as normal
to a monitor, mouse, keyboard and USB power supply.

ENER314 RASPBERRY PI RF-TRANSMITTER BOARD

2 of 6

How it is controlled by Software

The pin header connects to the add-on board as follows to allow you to control the GPIO lines as
outputs to drive the radio frequency transmitter.

GPIO Pin Header Rev 2.0
view from top

3V3

1 2

5V

GPIO2

3 4

5v

GPIO3

5 6

Ground

GPIO4

7 8

GPIO14

Ground

9 10

GPIO15
 Encoder signal D0 GPIO17 11 12

GPIO18

 Encoder signal D3 GPIO27 13 14

Ground
 Encoder signal D1 GPIO22 15 16

GPIO23 Encoder signal D2

3V3

17 18
 GPIO24

MODSEL mode select signal
(OOK/FSK)

GPIO10

19 20

Ground

GPIO9

21 22
 GPIO25

CE modulator enable (Output
ON/OFF)

GPIO11

23 24

GPIO8

Ground

25 26

GPIO7

Your software will use the outputs on the GPIO connector to drive the add-on board. At the end of this
document is some sample code written in Python to switch the Energenie sockets on and off.

Each board transmits a frame of information using On-Off-Keying (OOK) which is a basic form of
Amplitude Shift Keying (ASK). This frame includes source address (20 bits) and control data (4 bits). See

ENER314 RASPBERRY PI RF-TRANSMITTER BOARD

3 of 6

Appendix 1. The source address is randomly selected (so unique for that board), pre-programmed and
cannot be changed. The socket will accept commands frames that have the source address that it learns
during the learning process described later.

Here are the pairs of codes using D0-D3 signals that can be sent to control sockets.

D3 D2 D1 D0 Meaning D3 D2 D1 D0 Meaning

1 0 1 1 All on 0 0 1 1 All off

1 1 1 1 socket 1 on 0 1 1 1 socket 1 off

1 1 1 0 socket 2 on 0 1 1 0 socket 2 off

1 1 0 1 socket 3 on 0 1 0 1 socket 3 off

1 1 0 0 socket 4 on 0 1 0 0 socket 4 off

The pcb can therefore control a maximum of 4 Energenie radio sockets independently. However, more
that one socket may be controlled by the same control code.

There are two parts to the transmitter. The encoder and the modulator.
1) The encoder will accept 4 input signal levels programmed onto 4 of the GPIO lines (D0-D3) as shown

above. It will then serialise them on a single line to the modulator part.
2) The modulator transmits the serialised signal. It needs to be programmed in Amplitude-Shift Keying

(ASK) mode for the sockets using a GPIO signal. It also needs to be enabled by a separate GPIO
signal.

Firstly, we need to install a Python module, RPi.GPIO, to enable software control of the GPIO pins for
the Raspberry Pi. Open an LXterminal from the desktop and type the following lines:

sudo apt-get install python-rpi.gpio

Now, open a text editor such as Leafpad and type the python code listed at the end called ENER002.py
into a new file under home/pi (or, more easily, download it from the energenie4u.co.uk website and
copy using a USB flash drive). This program will allow us to send coded commands to the sockets to
program them and then switch them on and off when the return key on the keyboard is hit.

Controlling the sockets

Launch your program by typing the following command at the prompt in the LXterminal window:

sudo python ENER002.py

Then insert a radio controlled socket into a mains wall socket which is switched on.
The socket must then be programmed to learn a control code from the transmitter. To do this the
socket must be in learning mode indicated by the lamp on the front of the socket housing flashing
slowly. If it is not doing this, press and hold the green button on the from of the housing (while the lamp
is off), for 5 seconds or more and then release it when the lamp starts to flash at 1 second intervals.
Then send a signal to it from you program by hitting the return key. Acceptance will be indicated by a
brief quick flashing of the lamp on the housing which will then extinguish. Program first one socket then
the other in this way, otherwise they will react to the same signal.

ENER314 RASPBERRY PI RF-TRANSMITTER BOARD

4 of 6

You can then toggle the socket on and off by hitting the return key. You can also switch it manually on
and off by briefly pressing the button on the front housing.

You can always reset the socket programming by holding down the green button for 5 seconds or more
as mentioned before.

To increase the range of the transmitter you may wish to add an extra antenna to the circuit board. You
can do this by soldering a piece of ordinary copper wire 13.5cm long into the hole marked ANT1 on the
circuit board.

IMPORTANT: If using more than one socket, they will need to be inserted into separate mains wall
sockets with a physical separation of at least 2 metres to ensure they don't interfere with each other. Do
not put into a single extension lead.

Here is the program ENER002.py

#import the required modules

import RPi.GPIO as GPIO

import time

set the pins numbering mode

GPIO.setmode(GPIO.BOARD)

Select the GPIO pins used for the encoder K0-K3 data inputs

GPIO.setup(11, GPIO.OUT)

GPIO.setup(15, GPIO.OUT)

GPIO.setup(16, GPIO.OUT)

GPIO.setup(13, GPIO.OUT)

Select the signal used to select ASK/FSK

GPIO.setup(18, GPIO.OUT)

Select the signal used to enable/disable the modulator

GPIO.setup(22, GPIO.OUT)

Disable the modulator by setting CE pin lo

GPIO.output (22, False)

Set the modulator to ASK for On Off Keying

by setting MODSEL pin lo

GPIO.output (18, False)

Initialise K0-K3 inputs of the encoder to 0000

GPIO.output (11, False)

GPIO.output (15, False)

GPIO.output (16, False)

GPIO.output (13, False)

The On/Off code pairs correspond to the hand controller codes.

True = '1', False ='0'

print "To clear the socket programming, press the green button"

print "for 5 seconds or more until the red light flashes slowly"

print "The socket is now in its learning mode and listening for"

print "a control code to be sent. It will accept the following"

print "code pairs"

print "0011 and 1011 all ON and OFF"

print "1111 and 0111 socket 1"

ENER314 RASPBERRY PI RF-TRANSMITTER BOARD

5 of 6

print "1110 and 0110 socket 2"

print "1101 and 0101 socket 3"

print "1100 and 0100 socket 4"

print "Hit CTL C for a clean exit"

try:

 # We will just loop round switching the unit on and off

 while True:

 raw_input('hit return key to send socket 1 ON code')

 # Set K0-K3

 print "sending code 1111 socket 1 on"

 GPIO.output (11, True)

 GPIO.output (15, True)

 GPIO.output (16, True)

 GPIO.output (13, True)

 # let it settle, encoder requires this

 time.sleep(0.1)

 # Enable the modulator

 GPIO.output (22, True)

 # keep enabled for a period

 time.sleep(0.25)

 # Disable the modulator

 GPIO.output (22, False)

 raw_input('hit return key to send socket 1 OFF code')

 # Set K0-K3

 print "sending code 0111 Socket 1 off"

 GPIO.output (11, True)

 GPIO.output (15, True)

 GPIO.output (16, True)

 GPIO.output (13, False)

 # let it settle, encoder requires this

 time.sleep(0.1)

 # Enable the modulator

 GPIO.output (22, True)

 # keep enabled for a period

 time.sleep(0.25)

 # Disable the modulator

 GPIO.output (22, False)

 raw_input('hit return key to send ALL ON code')

 # Set K0-K3

 print "sending code 1011 ALL on"

 GPIO.output (11, True)

 GPIO.output (15, True)

 GPIO.output (16, False)

 GPIO.output (13, True)

 # let it settle, encoder requires this

 time.sleep(0.1)

 # Enable the modulator

 GPIO.output (22, True)

 # keep enabled for a period

 time.sleep(0.25)

 # Disable the modulator

 GPIO.output (22, False)

 raw_input('hit return key to send ALL OFF code')

 # Set K0-K3

 print "sending code 0011 All off"

 GPIO.output (11, True)

 GPIO.output (15, True)

 GPIO.output (16, False)

 GPIO.output (13, False)

 # let it settle, encoder requires this

ENER314 RASPBERRY PI RF-TRANSMITTER BOARD

6 of 6

 time.sleep(0.1)

 # Enable the modulator

 GPIO.output (22, True)

 # keep enabled for a period

 time.sleep(0.25)

 # Disable the modulator

 GPIO.output (22, False)

Clean up the GPIOs for next time

except KeyboardInterrupt:

 GPIO.cleanup()

Appendix 1 – Tx Frame format

